Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish.
نویسندگان
چکیده
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from (15)N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are alpha-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. (15)N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.
منابع مشابه
High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface.
High magnetic field solid-state NMR was performed on amphipathic cationic antimicrobial peptides from fish to characterize their secondary structure and orientation in hydrated phospholipid bilayers. High-resolution distance and orientational restraints on 13C- and 15N-labeled amidated piscidins 1 and 3 provided site-specific information establishing alpha-helicity and an orientation parallel t...
متن کاملAtlantic Cod Piscidin and Its Diversification through Positive Selection
Piscidins constitute a family of cationic antimicrobial peptides that are thought to play an important role in the innate immune response of teleosts. On the one hand they show a remarkable diversity, which indicates that they are shaped by positive selection, but on the other hand they are ancient and have specific targets, suggesting that they are constrained by purifying selection. Until now...
متن کاملAntimicrobial Peptides from Fish
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the f...
متن کاملAntimicrobial Peptides Derived from Milk: A Review
Milk proteins provide a natural source of bioactive peptides with potential health benefits and applications in the food industry. The release of these peptides from milk proteins is achieved either by hydrolysis using digestive proteases or by lactic acid bacteria fermentation. Peptides, particularly those derived from milk proteins, can exert a wide range of nutritional, functional and biolog...
متن کاملFive Different Piscidins from Nile Tilapia, Oreochromis niloticus: Analysis of Their Expressions and Biological Functions
Piscidins are antimicrobial peptides (AMPs) that play important roles in helping fish resist pathogenic infections. Through comparisons of tilapia EST clones, the coding sequences of five piscidin-like AMPs (named TP1∼5) of Nile tilapia, Oreochromis niloticus, were determined. The complete piscidin coding sequences of TP1, -2, -3, -4, and -5 were respectively composed of 207, 234, 231, 270, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1758 9 شماره
صفحات -
تاریخ انتشار 2006